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Abstract
In this letter, we present a family of second order in time nonlinear partial
differential equations, which have only one higher symmetry. These equations
are not integrable, but have a solution depending on one arbitrary function.

PACS numbers: 02.30.Jr, 02.30.Ik

1. Introduction

For a long time there has been a general belief, ‘if a partial differential equation or a system
of differential equations has one nontrivial symmetry, then it has infinitely many’ [1]. Indeed,
this statement is true in the case of evolutionary equations, in which the right-hand side is a
homogeneous differential polynomial [2]. However, in 1991 Bakirov proposed an example
putting this conjecture in doubt [3]. He found that the system{

ut = uxxxx + v2

vt = 1
5vxxxx

(1)

has a symmetry of order 6 and he also verified using a computer algebra software that it
does not have other symmetries up to the order 53. Recently, using p-adic analysis, it has
been rigorously proven that system (1) has only one higher symmetry and therefore the above
conjecture is not valid [4]. Furthermore, there exist infinitely many systems of the same type
with only one high symmetry. Even a modified conjecture, stating that the existence of n
higher symmetries for an n-component system of evolutionary equations implies infinitely
many [5], is not valid either—there exists a system, similar to (1) of order 7, which has only
two higher symmetries [6].
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The Cauchy problem for systems of the form (1) is always solvable no matter how many
symmetries the system has. One can solve the second equation and substitute the solution into
the first one. The equation obtained becomes a linear inhomogeneous equation, which can be
solved using standard techniques.

In this letter, we present the following family of partial differential equations:

utt = un,t − ut

u
(un − ut ) +

(un − ut )
2

u
− u∂n

x

(
un − ut

u

)
, n � 2. (2)

Here and further below we adopt the notation uk ≡ ∂k
x (u). The result of our study can be

formulated as the following:

Theorem 1. For any n � 2 equation (2) possesses a local higher symmetry

uτ = 1

u
(un − ut ). (3)

This symmetry is the only local higher symmetry of equation (2).

Equation (2) is not integrable by any known methods. Nevertheless, there is a family of
exact solutions depending on one arbitrary function.

2. Proof of the theorem and discussion

There are many equivalent definitions of infinitesimal local higher symmetries for partial
differential equations (see, for instance, [7]). In this letter we adopt the following definition.
A partial differential equation uτ = G(um, um−1, . . . , u, us,t , us−1,t , . . . , ut ) generates a local
symmetry of equation (2) if it is compatible with equation (2) [8]. A symmetry is called a
higher symmetry of equation (2) if m > 1 or s > 1.

Surprisingly enough, equation (2) and its symmetry (3) can be rewritten in a very compact
form

zt = zn − z2, (4)

uτ = z, (5)

where

z = 1

u
(un − ut ). (6)

For any n � 2 equation (4) does not possess higher symmetries and is not integrable by
the inverse scattering method or solvable by any other methods. Its trivial solution z = 0
corresponds to a stationary point of symmetry (5) and provides a nontrivial family of solutions
to equation (2). Indeed, z = 0 implies that

ut = un.

The general solution of this linear equation depends on one arbitrary function and it can be
found by standard methods.

Proof of the theorem. Let us rewrite equation (2) as a system of two evolutionary equations
on variables u and v = ut as follows:

ut = v,
(7)

vt = vn − v

u
(un − v) +

(un − v)2

u
− u∂n

x

(
un − v

u

)
≡ H [u, v].
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Equation (3) is a symmetry of (2) if and only if system (7) is compatible with

uτ = 1

u
(un − v),

(8)

vτ = Dt

(
1

u
(un − v)

)
= ∂n

x

(
un − v

u

)
− (un − v)2

u2
,

where Dt stands for the operator of total differentiation with respect to t according to (7).
Calculating the cross derivatives and expressing the results in terms of variable z (6) we obtain

utτ = vτ = zn − z2,

uτt = zt = zn − z2

and hence utτ = uτt . Analogously,

vtτ = ∂n
x (zn − z2) − 2z(zn − z2) − u∂τ (zn − z2) − vzτ ,

vτ t = ∂n
x (zn − z2) − 2z(zn − z2).

It is easy to verify that zτ = 0 and therefore vtτ = vτt and hence (3) is the symmetry of
equation (2).

Let us prove that symmetry (3) is the only local higher symmetry of equation (2). In
our proof, we shall use elements of the perturbative symmetry approach in the symbolic
representation [2, 9].

Function H [u, v] on the right-hand side of the system (7) can be rewritten in the form

H [u, v] = −u2n + 2un,t +
n∑

i=1

fi(u)Pi[u, v], (9)

where fi(u) = 1
ui and Pi[u, v] are polynomials in v and derivatives of u and v with respect to

x with constant coefficients, such that

Pi[λu, λv] = λi+1Pi[u, v], λ ∈ C. (10)

Equation (2) is a homogeneous equation, therefore polynomials Pi are homogeneous
polynomials of the weight 2n, i.e. W(Pi) = 2nPi , where

W =
∞∑

k=1

kuk

∂

∂uk

+
∞∑

k=0

(k + n)vk

∂

∂vk

.

Function H [u, v] can be treated as a differential polynomial in v and derivatives of u, v with
coefficients being functions of u only. The symbolic representation of such polynomials has
been defined and studied in [10].

To prove the second statement of the theorem we will need only a few first terms of the
function H [u, v] (9):

H [u, v] = −u2n + 2vn + f1(u)
(
∂n
x (uun − uv) − uu2n + u2

n + uvn − 3unv + 2v2) + R[u, v],

where R[u, v] = ∑
i�2 fi(u)Pi[u, v]. Then in the symbolic representation system (7) can be

rewritten as

ut = v̂,
(11)

vt = −ûk2n
1 + 2v̂qn

1 + f1(u) ◦ [û2a1(k1, k2) + ûv̂a2(k1, q1) + 2v̂2)] + R̂[u, v],

where

a1(k1, k2) = 1
2

[
(k1 + k2)

n
(
kn

1 + kn
2

) − (
kn

1 − kn
2

)2]
,

a2(k1, q1) = qn
1 − (k1 + q1)

n − 3kn
1 ,

and R̂[u, v] stands for the symbolic representation of R[u, v].
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It is easy to verify that the most general form of a higher symmetry (m � 2) of system
(7) in the symbolic representation is

uτ = g1(u) ◦ ûkm
1 + g2(u) ◦ v̂qm−n

1 + û2A1(k1, k2; u)

+ ûv̂A2(k1, q1; u) + v̂2A3(q1, q2; u) + Ŝ[u, v] ≡ G, (12)

vτ = Dt(G).

Here Ai(x, y; u) are polynomials in x, y with coefficients, depending on u. Polynomials
Ai(x, y; u) satisfy the condition Ai(0, y; u) = 0, i = 1, 2. The remainder Ŝ[u, v] stands for
the terms of higher nonlinearity in v and x derivatives of u, v. �

Lemma 1 . If (12) is a symmetry of equation (11), then g1(u) and g2(u) are not equal to zero
simultaneously.

Sketch of the proof. Let us assume that symmetry (12) does not have linear terms
(in û, v̂) and starts with the terms of order s > 1:

uτ =
s∑

p=0

Ap(k1, k2, . . . , kp, q1, q2, . . . , qs−p; u)ûpv̂s−p + higher order terms.

It follows from the compatibility conditions of (11) and (12) that the coefficients
Ap(k1, k2, . . . , kp, q1, q2, . . . , qs−p; u) satisfy a linear system of homogeneous algebraic
equations. This system has only a trivial solution Ap = 0, p = 0, . . . , s since the determinant
of the corresponding matrix is not identically vanishing.

The case m = n corresponds to symmetry (3). In this case Ai(x, y; u) = 0 and
g1(u) = −g2(u) = 1

u
.

Let m �= n. From the compatibility conditions of (11) and (12) it follows that

A3(q1, q2; u) = 1

2
f1(u)g2(u)

qm−n
1 + qm−n

2 − 2(q1 + q2)
m−n

qn
1 + qn

2 − (q1 + q2)n
.

Polynomial qn
1 + qn

2 − (q1 + q2)
n does not divide qm−n

1 + qm−n
2 − 2(q1 + q2)

m−n if m �= n

and therefore A3(q1, q2; u) does not represent a symbol of a differential polynomial with
u-dependent coefficients. It implies that g2(u) = 0.

Having g2(u) = 0 we find (from the compatibility conditions) that

A2(k1, q1; u) = f1(u)g1(u)
km

1 + qm
1 − (k1 + q1)

m

kn
1 + qn

1 − (k1 + q1)n
.

For s > 1 the polynomial Ks(x, y) = xs + ys − (x + y)s can be factorized as

Ks(x, y) = xyTs(x, y), Ts(0, y) �= 0. (13)

Hence

A2(k1, q1; u) = f1(u)g1(u)
Tm(k1, q1)

Tn(k1, q1)
. (14)

It follows from (13) that A2(0, q1; u) = 0 only if g1(u) = 0. It follows from the lemma that a
symmetry without a linear part does not exist. �
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